The general solution of (√3−1)sinθ+(√3+1)cosθ=2 is
(where n∈Z)
A
θ=2nπ±π4+π12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
θ=nπ+(−1)nπ4+π12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
θ=2nπ±π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θ=nπ+(−1)nπ4−π12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aθ=2nπ±π4+π12 (√3−1)sinθ+(√3+1)cosθ=2 ⇒(√3−1)2√2sinθ(√3+12√2)cosθ=1√2 ⇒sinπ12sinθ+cosπ12cosθ=cosπ4 ⇒cos(θ−π12)=cosπ4 ⇒θ−π12=2nπ±π4,n∈Z
So, θ=2nπ±π4+π12,n∈Z