The general solution of tanα+2tan2α+4tan4α+8cot8α=√3 is (where n∈Z)
A
2nπ±π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ±π6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nπ+π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
nπ+(−1)nπ3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cnπ+π6 tanα+2tan2α+4tan4α+8cot8α=√3
We know that, cotα−tanα=2cot2α
Now, tanα=cotα−2cot2α2tan2α=2(cot2α−2cot4α)4tan4α=4(cot4α−2cot8α)8cot8α=8cot8α⇒tanα+2tan2α+4tan4α+8cot8α=√3⇒cotα=√3⇒tanα=1√3∴α=nπ+π6,n∈Z