The correct option is A θ=2rπ,rϵZ
tan(π2sinθ)=cot(π2cosθ)
⇒tan(π2sinθ)=tan(π2−π2cosθ)
⇒π2sinθ=rπ+π2−π2cosθ,rϵZ
⇒sinθ+cosθ=(2r+1),rϵZ
⇒1√2sinθ+1√2cosθ=2r+1√2,rϵZ
⇒cos(θ−π4)=2r+1√2,rϵZ
⇒cos(θ−π4)=1√2 or −1√2 (for r=0,−1)
⇒θ−π4=2rπ±π4,rϵZ
⇒θ=2rπ±π4+π4,rϵZ
⇒θ=2rπ,2rπ+π2,rϵZ
But θ=2rπ+π2,rϵZ does not satisfy the given equation.
∴θ=2rπ,rϵZ.