The general solution of the differential equation dydx+sinx+y2=sinx−y2 is
A
loge∣∣∣tany2∣∣∣=−2cosx2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
loge∣∣∣tany2∣∣∣=2cosx2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
loge∣∣∣tany2∣∣∣=2sinx2+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
loge∣∣∣tany2∣∣∣=−2sinx2+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Cloge∣∣∣tany2∣∣∣=−2sinx2+C We have dydx+sinx+y2=sinx−y2 ⇒dydx=sinx−y2−sinx+y2 ⇒dydx=2cos(x−y2+x+y2)2sin(x−y2−x+y2)2 ..... [∵sinC−sinD=2cosC+D2.sinC−D2] ⇒dydx=2cosx2.sin−y2
⇒dydx=−2cos(x2).sin(y2) ⇒dysin(y2)=−2cos(x2) On integrating both sides, we get ⇒∫cosec(y2)dy=−2∫cos(x2)dx ⇒2loge∣∣∣tany2∣∣∣=−4sin(x2)+C