The general solution of the differential equation dydx=x(2lnx+1)siny+ycosy,x>0 is
(where c is constant of integration)
A
ysiny=x2lnx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
ysiny=x2(lnx+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ysiny−cosy=x2(lnx+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
ysiny=(lnx+1)+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aysiny=x2lnx+c Given : dydx=x(2lnx+1)siny+ycosy ⇒(siny+ycosy)dy=x(2lnx+1)dx
Integrating both sides, we get ∫(siny+ycosy)dy=∫x(2lnx+1)dx ∫(siny)dy+∫(ycosy)dy=∫x(2lnx+1)dx
Using ILATE rule, we get −cosy+ysiny+cosy=x2lnx+x22−x22+c ⇒ysiny=x2lnx+c