1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Variable Separable Method
The general s...
Question
The general solution of the differential equation
d
y
d
x
=
x
+
y
+
1
2
x
+
2
y
+
1
is:
A
log
e
|
3
x
+
3
y
+
2
|
+
3
x
+
6
y
=
C
No worries! Weāve got your back. Try BYJUāS free classes today!
B
log
e
|
3
x
+
3
y
+
2
|
−
3
x
+
6
y
=
C
No worries! Weāve got your back. Try BYJUāS free classes today!
C
log
e
|
3
x
+
3
y
+
2
|
−
3
x
−
6
y
=
C
No worries! Weāve got your back. Try BYJUāS free classes today!
D
log
e
|
3
x
+
3
y
+
2
|
+
3
x
−
6
y
=
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
C
log
e
|
3
x
+
3
y
+
2
|
+
3
x
−
6
y
=
C
Given differential equation,
d
y
d
x
=
x
+
y
+
1
2
x
+
2
y
+
1
.....(i)
Put
x
+
y
=
v
⇒
1
+
d
y
d
x
=
d
v
d
x
⇒
d
y
d
x
=
d
v
d
x
−
1
∴
Eq. (i) becomes,
d
y
d
x
=
v
+
1
2
v
+
1
⇒
d
v
d
x
−
1
=
v
+
1
2
v
+
1
⇒
d
v
d
x
=
v
+
1
2
v
+
1
+
1
⇒
d
v
d
x
=
v
+
1
+
2
v
+
1
2
v
+
1
⇒
d
v
d
x
=
3
v
+
2
2
v
+
1
⇒
2
v
+
1
3
v
+
2
d
v
=
d
x
⇒
[
2
3
(
3
v
+
2
)
−
1
3
]
3
v
+
2
d
v
=
d
x
⇒
[
2
3
−
1
3
×
1
(
3
v
+
2
)
]
d
v
=
d
x
Integrating both sides, we get
⇒
∫
(
2
3
−
1
3
×
1
(
3
v
+
2
)
)
d
v
=
∫
d
x
+
C
′
,
Where
C
′
is a constant of integration.
⇒
2
3
v
−
1
3
log
(
3
v
+
2
)
3
=
x
+
C
′
⇒
2
3
(
x
+
y
)
−
1
9
log
(
3
x
+
3
y
+
2
)
=
x
+
C
′
⇒
6
x
+
6
y
−
log
(
3
x
+
3
y
+
2
)
=
9
x
+
C
′
⇒
3
x
−
6
y
+
log
(
3
x
+
3
y
+
2
)
=
C
Suggest Corrections
0
Similar questions
Q.
9
x
6
y
2
÷
3
x
3
y
=
Q.
Complete the following table of products of two monomials:
First
→
Second
↓
3
x
−
6
y
4
x
2
−
8
x
y
9
x
2
y
−
11
x
3
y
2
3
x
−
6
y
4
x
2
−
8
x
y
9
x
2
y
−
11
x
3
y
2
Q.
Solve the following simultaneous equations graphically.
(1) 2x + 3y = 12 ; x ā y = 1
(2) x ā 3y = 1 ; 3x ā 2y + 4 = 0
(3) 5x ā 6y + 30 = 0 ; 5x + 4y ā 20 = 0
(4) 3x ā y ā 2 = 0 ; 2x + y = 8
(5) 3x + y = 10 ; x ā y = 2