The general solution of the differential equation dydx+sinx+y2=sinx−y2 is :
A
loge∣∣∣tany4∣∣∣=−2sinx2+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
loge∣∣∣tany2∣∣∣=−2sinx2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
loge∣∣∣tany4∣∣∣=2sinx2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
loge∣∣∣tany2∣∣∣=−sinx2+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aloge∣∣∣tany4∣∣∣=−2sinx2+c dydx+sinx+y2=sinx−y2⇒dydx=−2cosx2siny2⇒∫dy2siny2=−∫cosx2dx⇒∫dy2siny2=−2sinx2⇒∫dy4siny4cosy4=−2sinx2⇒∫sec2y4dy4tany4=−2sinx2 ⇒loge∣∣∣tany4∣∣∣=−2sinx2+c