The correct option is A 1(x+y)2=Cex2+x2+1
dydx+x(x+y)=x3(x+y)3−1⇒(dydx+1)+x(x+y)=x3(x+y)3⇒(x+y)−3d(y+x)dx+x(x+y)−2=x3
Put (x+y)−2=z
dzdx=−2(x+y)−3d(y+x)dx
⇒−12dzdx+xz=x3⇒dzdx−2xz=−2x3
So, integrating factor is,
I.F.=e∫−2x dx=e−x2
Now,
z⋅e−x2=∫−2x3e−x2 dx+c
Let I=∫2x3e−x2 dx
Put x2=t⇒2xdx=dt
I=∫te−t dt =−te−t−e−t
So,
⇒z⋅e−x2=e−t(1+t)+C⇒1(x+y)2=Cex2+1+x2