The general solution of the differential equation dydx=ytanx−y2secx is
The general solution of dydx+ytanx=secx is (a) y secx=tanx+C (b) y tanx=secx+C (c) tanx=y tanx+C (d) x secx=tany+C
For the given differential equation find the general solution. cos2dxdydx+y=tanx(0≤x<pi2)