The general solution of the differential equation dydx=cotxcoty is
cosx=ccosecy
sinx=csecy
sinx=ccosy
cosx=csiny
Find the general solution of the differential equation
Given, dydx=cotxcoty
⇒dycoty=cotxdx⇒∫tanydy=∫cotxdx⇒logsecy=logsinx+logc∵∫tanxdx=logsec(x)+c∵∫cotxdx=logsinx+c⇒secy=csinx⇒csecy=sinx⇒sinx=csecy
Hence, option (B) is the correct answer.
Find the general solution of the differential equation (1+x2)dy+2xydx=cot x dx(x≠0)