The general solution of the differential equation dydx=x+y+12x+2y+1 is
loge|3x+3y+2|+3x+6y=C
loge|3x+3y+2|-3x+6y=C
loge|3x+3y+2|-3x-6y=C
loge|3x+3y+2|+3x-6y=C
Find the general solution of the differential equation
Given, dydx=x+y+12x+2y+1
Let, x+y=v
⇒dvdx=dydx+1⇒dvdx-1=dydx⇒dvdx-1=v+12v+1⇒dvdx=3v+22v+1⇒3v+22v+1dv=dx
Integrating both sides, we get
⇒∫23-13(3v+2)dv=∫dx⇒23v-19log3v+2=x+C1⇒23x+y-19log3x+3y+2=x+C1⇒6x+6y-log3x+3y+2=9x+C1⇒log3x+3y+2+3x-6y=C⇒loge3x+3y+2+3x-6y=C
Hence, option (D) is the correct answer.