The general solution of the differential equation dydx=1+y21+x2 is
tan-1 y= tan-1 x + c
tan-1 y+ tan-1 x = c
sin-1 y= sin-1 x + c
sin-1 y + sin-1 x = c
∫11+y2dy=∫11+x2dx+Ctan−1y−tan−1x=C