The correct option is C sec x = (c + tan x)y
We have dydx=y tan x−y2sec x⇒1y2dydx−1ytanx=−secx
Putting 1y=v⇒−1y2dydx=dvdx, we obtain
dvdx+tan x.v=secxwhich is linear
I.F=e∫tanxdx=elogsecx=secx
∴ The solution is
v secx=∫sec2xdx+c⇒1ysecx=tanx+c
⇒secx=y(c+tanx)