The correct option is B ∣∣yxcos(yx)∣∣=c
(xcos(yx)+ysin(yx))ydx=(ysin(yx)−xcos(yx))xdy
dydx=(xcos(yx)+ysin(yx))y(ysin(yx)−xcos(yx))x
Put y=vx⇒dydx=v+xdvdx
⇒v+xdvdx=(xcosv+vxsinv)vx(vxsinv−xcosv)x
⇒xdvdx=2vcosvvsinv−cosv
⇒(vsinv−cosv)2vcosvdv=dxx
Integrating both sides, we get
∫12tanvdv−∫12⋅1vdv=∫dxx
⇒12(ln|secv|−ln|v|)=ln|x|+ln|k|
⇒ln∣∣secvv∣∣=ln(kx)2
⇒ln∣∣
∣
∣∣xsec(yx)y∣∣
∣
∣∣=ln(kx)2
∴∣∣yxcos(yx)∣∣=c, where (c=1k2)