The general solution of the differential equation sin−1(dydx)=x+y is (where c is a constant of integration)
A
sin(x−y)=(x+c)cos(x+y)+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin(x−y)=(x+c)cos(x−y)+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin(x+y)=(x+c)cos(x+y)+1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(x+y)=(x+c)cos(x−y)+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Csin(x+y)=(x+c)cos(x+y)+1 dydx=sin(x+y)
Putting x+y=t dydx=dtdx−1⇒dtdx=1+sint⇒dt1+sint=dx
Integrating both sides,we get
∫dt1+sint=∫dx ⇒∫1−sintcos2tdt=x+c ⇒∫(sec2t−secttant)dt=x+c tant−sect=x+c ⇒−1−sintcost=x+c ⇒sint−1=xcost+ccost
Substituting the value of t sin(x+y)=xcos(x+y)+ccos(x+y)+1