The correct option is B ln|√x2−y2|=4sin−1(yx)+c
x(xdx−ydy)=4√x2−y2(xdy−ydx)⋯(i)
Put x=rsecθ,y=rtanθ
⇒x2−y2=r2
⇒xdx−ydy=rdr and
xdy−ydx=(r2secθ)dθ
∴ From (i)
⇒(rsecθ)(rdr)=4r(r2⋅secθdθ)
⇒drr=4dθ
Integrating both sides, we get
∫drr=∫4dθ
⇒ln|r|=4θ+c
∴ln|√x2−y2|=4sin−1(yx)+c