The correct option is A nπ+(−1)n+1π6,n∈Z
To solve this equation, we try to write the equation in terms of sin θ.
Now, we can write the equation as:
2cos2θ+3sin θ=0⇒2(1−sin2θ)+3sin θ=0⇒2sin2θ−3sinθ−2=0⇒(sin θ−2)(2sin θ+1)=0
This means either sin θ−2=0 or 2sinθ+1=0.
But, sin θ=2 is not possible.
Thus,
sin θ=−12=sin(−π6)⇒θ=nπ+(−1)n(−π6), n∈Z⇒θ=nπ+(−1)n+1(π6), n∈Z