The correct option is A nπ+(−1)nπ6, n∈Z
We have the given equation:
√5 − 2sinx = 6 sinx−1.
Now, the equation is meaningful if sinx≤52 which is always true.
Also, 6 sinx−1>0 as L.H.S is always positive.
Now,
6 sinx−1>0⇒sinx>16.
On squaring the equation, we get:
5−2sinx=(6sinx−1)2⇒5−2sinx=(36sin2x+1−12sinx)⇒36sin2x−10sinx−4=0⇒18sin2x−5sinx−2=0⇒(9sinx+2)(2sinx−1)=0⇒sinx=−29 or sinx=12But, sinx=−29 is not possible as sinx>16.Thus, the only solution of theabove equation is:sinx=12=sinπ6⇒x=nπ+(−1)nπ6, n∈Z.