Solving Linear Differential Equations of First Order
The general s...
Question
The general solution of the equation dydx=y2−x2y(x+1) is
A
y2=(1+x)log(1+x)−c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y2=(1+x)logc(1−x)−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y2=(1−x)logc(1+x)−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y2=(1+x)logc(1+x)−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dy2=(1+x)logc(1+x)−1 dydx=y2−x2y(x+1)...(i) ⇒ydydx=y2−x2(x+1)
⇒ydydx−y22(x+1)=−x2(x+1) ......... (ii) Put y2=t By differentiating both side w.r.t x we get 2ydydx=dtdx ∴ Eq. (ii) reduces to 12dtdx−t2(x+1)=−x2(x+1) ⇒dtdx−1(x+1)t=−x(x+1) This is linear differential equation with P=1(x+1);Q=−x(x+1) ∴IF=e∫Pdx=e∫−1(x+1)dx =e−log(x+1)=1(x+1) ∴ Required solution will be t.IF=∫Q(IF)dx+logc ........ (Here logc is constant) y2.1(x+1)=∫(−x(x+1)×1(x+1))dx+logc ⇒y2(x+1)=−[∫1(x+1)dx−∫1(1+x)2dx]+logc ⇒y2(x+1)=logc1+x−11+x ⇒y2=(1+x)logc(1+x)−1