The general solution of the equation; cosx.cos6x=−1, is:
cosx.cos6x=−1
cosx(cos2(3x))=−1=cosx(2cos23x−1)
=cosx(2(4cos3x−3cosx)2−1)=−1
=cosx(2(16cos6x+9cos2x−24cos4x−1))=−1
=32cos7x−48cos5x+18cos3x−cosx+1=0
=(cosx+1)(32cos6x−32cos5x−16cos4x+16cos3x+2cos2x−2cox+1)=0
The only real solution for this is ,
cosx=−1
So, the principle solution for this is π
General solution=>2nπ+π