The correct option is A y2=(1+x)logc1+x−1
dydx=y2−x2y(x+1)⇒2ydydx−y2x+1=−xx+1
Putting y2=t
⇒2ydydx=dtdx
dtdx−tx+1=−x1+x
I.F.=exp(∫−1x+1 dx) =1x+1⇒tx+1=∫(1x+1×−x1+x) dx⇒tx+1=∫1x+1×(11+x−1) dx⇒tx+1=∫(1(1+x)2−1x+1) dx⇒tx+1=−11+x−log(1+x)+logc, where c is a constant.
⇒y2=(1+x)logc1+x−1