The correct option is B
nπ4+(−1)n+1(π8), n∈Z
Here, we can write the equation as:
sin3θ cos θ−cos3θ sin θ=14⇒4sin θcos θ(sin2θ−cos2θ)=1⇒2sin 2θ(sin2θ−cos2θ)=1⇒−2sin 2θ(cos2θ−sin2θ)=1⇒−2sin 2θcos 2θ=1⇒sin 4θ=−1⇒sin 4θ=sin(−π2)⇒4θ=nπ+(−1)n(−π2), n∈Z⇒4θ=nπ+(−1)n+1(π2), n∈Z⇒θ=nπ4+(−1)n+1(π8), n∈Z
Hence, Option b. is correct.