The correct option is B 2nπ+π2, n∈Z.
We are given that sin3x2−cos3x2=cosx×(2+sinx)3,Now, LHScan be written as sin3x2−cos3x2 = (sinx2−cosx2) (sin2x2 + cos2x2 + sinx2cosx2) = (sinx2−cosx2) (2 + sinx)2So, the equation becomes(sinx2−cosx2) (2 + sinx)2 = cosx×(2+sinx)3sinx2−cosx2 = 2cosx3sinx2−cosx2 = 2(cos2x2−sin2x2)3(∵cos 2θ = cos2θ − sin2θ)sinx2−cosx2 = 2(cosx2−sinx2) (cosx2+sinx2)3sinx2−cosx2 = 0 or cosx2+sinx2 = −32tan x2 = 1 or cosx2+sinx2 = −32Now,tan x2 = 1 ⇒x2 = nπ + π4, n∈Z⇒x = 2nπ + π2, n∈Zor cosx2+sinx2 = −32, this equation doesn't have a solution.If asinx + bcosx = c have a real solution,then (c|≤√a2 + b2Hence, x = 2nπ + π2, n∈Z