The correct option is B (6n+1)π12 where nϵI
tan2θ+2√3tanθ−1=0
tanθ=−2√3±√12−4.1(−1)2.1
tanθ=−2√3±√162
tanθ=−2√3±42
⇒tanθ=−√3±2
Taking +ve sign
⇒tanθ=2−√3
⇒tanθ=tan(π12)
⇒θ=mπ+π12,m∈I
Taking -ve sign
tanθ=−2−√3
tanθ=−tan5π12
tanθ=tan7π12,tanθ=tan19π12
⇒tanθ=7π12 (∵tan19π12=tan7π12)
⇒θ=pπ+7π12
Hence, in general we can write, θ=(6n+1)π12,n∈I