wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of the following equation : 2(sinxcos2x)sin2x(1+2sinx)+2cosx=0 is/are

A
x=2nπ;nI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nπ+(1)n(π2);nI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x=nπ+(1)nπ6;nI
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x=nπ+(1)nπ4;nI
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A x=2nπ;nI
C x=nπ+(1)nπ6;nI
D nπ+(1)n(π2);nI
2(sinxcos2x)sin2x(1+2sinx)+2cosx=0
2sinxsin2x2cos2x2sinxsin2x+2cosx=0
2sinxsin2x2cos2x(cosxcos3x)+2cosx=0
2sinx(1cosx)+4cos3x3cosx+cosx2(2cos2x1)=0
2sinx(1cosx)+4cos3x4cos2x2cosx+2=0
2sinx(1cosx)4cos2x(1cosx)+2(1cosx)=0
(1cosx){2sinx4(1sin2x)+2}=0
cosx=1 or sinx2(1sin2x)+1=0
x=2nπ or (2sinx1)(sinx+1)=0 sinx=12 or sinx=1
Hence solution set is x=2nπ,x=nπ+(1)nπ6 or x=nπ(1)nπ2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon