The correct options are
A x=2nπ;n∈I
C x=nπ+(−1)nπ6;n∈I
D nπ+(−1)n(−π2);n∈I
2(sinx−cos2x)−sin2x(1+2sinx)+2cosx=0
⇒2sinx−sin2x−2cos2x−2sinxsin2x+2cosx=0
⇒2sinx−sin2x−2cos2x−(cosx−cos3x)+2cosx=0
⇒2sinx(1−cosx)+4cos3x−3cosx+cosx−2(2cos2x−1)=0
⇒2sinx(1−cosx)+4cos3x−4cos2x−2cosx+2=0
⇒2sinx(1−cosx)−4cos2x(1−cosx)+2(1−cosx)=0
⇒(1−cosx){2sinx−4(1−sin2x)+2}=0
⇒cosx=1 or sinx−2(1−sin2x)+1=0
⇒x=2nπ or (2sinx−1)(sinx+1)=0 ⇒sinx=12 or sinx=−1
Hence solution set is x=2nπ,x=nπ+(−1)nπ6 or x=nπ−(−1)nπ2