wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

The general solution of the trigonometric equation
cosθ=12 is:

A
θ=(2n+1)π±3π4, where nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
θ=nπ±π4, where nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
θ=2nπ±π4, where nZ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θ=2nπ±3π4, where nZ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D θ=2nπ±3π4, where nZ
Given that
cosθ=12
We know that cosπ4=12
cosθ is negative in 2nd and 3rd quadrant
cos(ππ4)=cos(π+π4)=12
cos3π4=cos5π4=12

Using cosθ=cosαθ=2nπ±α, where nZ

The general solution of cosθ=12 is
θ=2nπ±3π4 or 2nπ±5π4, where nZ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon