The general solution(s) of 4sinθsin2θsin4θ=sin3θ can be
A
nπ2,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ,n∈Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(3n±1)π3,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(3n±1)π9,n∈Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(3n±1)π9,n∈Z We have 4sinθsin2θsin4θ=3sinθ−4sin3θ ⇒sinθ[4sin2θsin4θ−3+4sin2θ]=0 ⇒sinθ[2(cos2θ−cos6θ)−3+2(1−cos2θ)]=0 ⇒sinθ(−2cos6θ−1)=0 ⇒sinθ=0orcos6θ=−12 ⇒θ=nπor6θ=2nπ±2π3,∀n∈Z ⇒θ=nπorθ=(3n±1)π9,∀n∈Z