The correct option is B 2nπ+π2
3−2cosθ−4sinθ−cos2θ+sin2θ=0 ⇒3−2cosθ−4sinθ−1+2sin2θ+2sinθcosθ=0
⇒2sin2θ−2cosθ−4sinθ+2sinθcosθ+2=0
⇒(sin2θ−2sinθ+1)+cosθ(sinθ−1)=0
⇒(sinθ−1)[sinθ−1+cosθ]=0
Case 1: Either sinθ=1
⇒θ=2nπ+π2 where n∈Z
Case 2: sinθ+cosθ=1
⇒cos(θ−π4)=1√2=cosπ4⇒θ−π4=2nπ±π4⇒θ=2nπ, 2nπ+π2
Hence, θ=2nπ, 2nπ+π2,n∈Z