The general value of log(1+i)+log(1−i) is
Prove that
(i)log 12=log 3+log 4
(ii) log 50=log 2+2 log 5
(iii) log(1+2+3)=log 1+log 2+log 3
The maximum value of log10100(1x2+x+1) is k. Then the value of log(1k) - log3 is