The given diagram shows two isosceles triangles which are similar also. In the given diagram, PQ and BC are not parallel and AP = PQ.
Given that PC =4 cm, AQ=3 cm, QB =12 cm, BC =15 cm.
Calculate the length of AP.
5 cm
∵ΔAPQ∼ΔABC(given)
∴AQAC=APBC
⇒3AP+PC=AP15(∵AQ=3,BC=15)
⇒3AP+4=AP15(∵PC=4)
AP (AP+4)=45
Let AP =x, then
x(x+4)=45⇒x2+4x−45=0
⇒x2+9x−5x−45=0
⇒x(x+9)−5(x+9)=0
⇒(x+9)(x−5)=0
Either x+9=0, then x =-9 which is not possible.
Or x-5=0, then x=5
∴AP=5 cm