Triangles on the Same Base and between the Same Parallels
The given fig...
Question
The given figure shows a pentagon ABCDE. EG,drawn parallel to DA,meets BA produced at G,and CF,drawn parallel to DB,meets AB produced at F.Show that ar(pentagon ABCDE)=ar(△DGF).
Open in App
Solution
Given: ABCDE is a pentagon. EG || DA and CF || DB. To prove: ar(pentagon ABCDE ) = ar ( ∆ DGF) Proof: ar(pentagon ABCDE ) = ar(∆ DBC) + ar(∆ ADE ) + ar(∆ ABD) Also, ar (∆ DGF) = ar(∆ DBF) + ar(∆ ADG) + ar(∆ ABD ) ...(i) ...(ii) Now, ∆DBC and ∆ DBF lie on the same base and between the same parallel lines. ∴ ar(∆ DBC) = ar(∆ DBF) ...(iii) Similarly, ∆ADE and ∆ADG lie on same base and between the same parallel lines. ∴ ar(∆ ADE) = ar(∆ ADG) ...(iv) From (iii) and (iv), we have: ar(∆ DBC) + ar(∆ ADE) = ar(∆ DBF) + ar(∆ ADG) Adding ar(∆ ABD) on both sides, we get: ar(∆ DBC) + ar(∆ ADE) + ar(∆ ABD) = ar (∆ DBF) + ar(∆ ADG) + ar(∆ ABD) By substituting the values from (i) and (ii), we get: ar(pentagon ABCDE) = ar (∆ DGF)