The correct option is
C 15oGiven that ABCD is a square & △ APB is an equilateral triangle.
Hence ∠PAB=∠BAO=∠ABP=∠BPA=60o[ All interior angles of equilateral triangle are equal to 60o]
So ∠PBC=∠ABC−∠ABP=90o−60o=30o
Since PB=AB=BC so △ PCB is a isosceles triangle.
So we get ∠BCP=∠BPC[ Base angles of isosceles triangle are equal]
Now in △ PCB,
∠BPC+∠BCP+∠PBC=180o
⇒2∠BCP+∠PBC=180o
⇒2∠BCP+30o=180o
⇒2∠BCP=180o−30o
⇒2∠BCP=150o
⇒∠BCP=150o2
⇒∠BCP=75o
Now ∠PCD=∠BCD−∠BCP
⇒∠PCD=90o−75o
⇒∠PCD=15o