The correct option is D y=x3−2x2−3x
From the graph consider the point (−1,0). That is, when x=−1,y=0.
Now let us check which of the given functions satisfy the above condition.
A. y=x3−2x2+3x
Substitute x=−1, we get y=(−1)3−2(−1)2+3(−1)=−1−2−3=−6
Thus x=−1 yields y=−6
Therefore we reject A.
B. y=x3+2x2−3x
Substitute x=−1, we get y=(−1)3+2(−1)2−3(−1)=−1+2+3=4
Thus x=−1 yields y=4
Therefore we reject B.
C. y=x3−2x2−3x
Substitute x=−1, we get y=(−1)3−2(−1)2−3(−1)=−1−2+3=0
Thus x=−1 yields y=0
Therefore we consider C for now.
D. y=x3+2x2+3x
Substitute x=−1, we get y=(−1)3+2(−1)2+3(−1)=−1+2−3=−2
Thus x=−1 yields y=−2
Therefore we reject D.
Hence C is the only option that satisfies the point from the graph.
Therefore we conclude that the given graph represents function y=x3−2x2−3x