The greatest and least value of |z1+z2| if z1=24+7i and |z2|=6 are respectively
A
31,25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25,19
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
31,19
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D31,19 |z2|=6 represents a circle of radius 6 centred at (0,0)z1=24+7i represents a point A(24,7). Let a diameter through Ameet the circle in points B and C, then AB is leastand AC is greatest distance of A from the circle. Clearly AO2=242+72=625∴AO=25 ∴Greatdistance=AC+AO+OC =25+6=31 ∴leastdistance=AB=AO−BO=25−6=19 Alternative Solution. Since,∣∣z2∣∣=6 , ∴z2may be taken as z2=6eiθ or z2=6(cosθ+isinθ),z1=24+7i ∴z1+z2=(24+6cosθ)+i(7+6sinθ) ⇒[z1+z2]2=(24+6cosθ)2+(7+6sinθ)2 =576+49+12(24cosθ+7sinθ) +36(cos2θ+sin2θ) Now put 24=rsinα,7=rcosα Where r2=242+72=625∴r=25 ∴d2=625+36+12rsin(θ+α) =661+12(25)(±1):+formax.−formin =661+300 or 661−300 =961 or 361 i.e., (31)2 or (19)2 ∴d=31(max),=19(min.)