The greatest angle of a triangle whose sides are x2+x+1,2x+1 and x2−1, is:
Let a=x2−1;b=2x+1,c=x2+x+1
Here the greatest side is c=x2+x+1
The greatest angle C will be opposite the greatest side.
c=x2+x+1
Use the cosine rule
⇒c2=a2+b2−2bc.cosC
⇒(x2+x+1)2=(x2−1)2+(2x+1)2−2(x2−1)(2x+1)cosC
⇒2(x2−1)(2x+1)cosC=[(x2−1)2−(x2+x+1)2]+(2x+1)2
⇒2(x2−1)(2x+1)cosC=(x2−1+x2+x+1)(x2−1−x2−x−1)+(2x+1)2
⇒2(x2−1)(2x+1)cosC=x(2x+1)(−2−x)+(2x+1)2
⇒2(x2−1)cosC=x(−2−x)+(2x+1)=−x2+1
⇒2cosC=−1
⇒cosC=−1/2
⇒C=1200