The correct option is
C 197(√2+1)6=A[A] is the greatest integer less than A.
Let f be some unknown fraction.
Hence, we can write [A]+f=A.
Now, (√2−1)<1(√2−1)6<1
Let, (√2−1)6 be denoted by f1.
So, (√2+1)6+(√2−1)6=[A]+f+f1⇒2(6C0.(√2)6+6C2.(√2)4+6C6)=[A]+f+f1⇒2(8+60+31)=[A]+f+f1⇒198=[A]+f+f1
Now, 0<f<10<f1<10<f+f1<2
But as 198−[A]=f+f1, So, f+f1 has to be an integer.
As, the only integer in (0,2) is 1, hence f+f1=1
So, [A]=197