The greatest integer less than or equal to (√3+1)6 is
415
(√3+1)6 + (√3−1)6 = 2[6C0(√3)6+6C2(√3)4+6C4(√3)2+6C6] = 416
Let (√3+1)6 = I + F where I is integral part and F is functional part
Let (√3−1)6 = G
0 < F < 1;0 < G < 1 ⇒ 0 < F + G < 2 ⇒ F + G = 1
I + F + G = 416 ⇒ I + 1 = 416 ⇒ I = 415