wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The greatest integral value of x which can satisfy the inequality x26x+3x24x+3<0 is

Open in App
Solution

x26x+3x24x+3<0
x26x+3(x3)(x1)<0
Numerator
x26x+3=0D=3612=24>0
The roots of the equation x26x+3=0 are
x=6±242x=3±6

The inequality becomes
x26x+3(x3)(x1)<0(x(36))(x(3+6))(x1)(x3)<0

Critical point are 36,1,3,3+6


x(36,1)(3,3+6)

Hence, the greatest integral value which satisfies the inequality is 5.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon