The greatest value of f(x)=2sinx+sin2x on [0,3π2] is
f(x)=2sinx+sin2x
Differentiating, we get f′(x)=2cosx+2cos2x
Equating it to 0, we have cosx=1−2cos2x
⇒cosx−1+2cos2x=0
⇒cosx=−1±√1+84
⇒cosx=−1 or 0.5
Thus, θ is
either π or π3
So, the value of expression becomes 0
or 2×√32+√32=3√32