The correct option is C 22 cm
Let ABC is aright angled triangle in which ∠B=90∘
Let I be the in centre and incircle touches the side AB,BC.AC at point D,E,F.
As we know that IB is the angle bisector
Hence ∠IBD=∠IBF=902=45∘
Now in ΔIBD,∠BED=90∘
now in ΔIBD,∠IBD=45∘.∠BDE=90∘
∴∠BID=180∘−(∠IBD+∠BDE)
=180∘−(45∘+90∘)=45∘
Hence ∠BID=∠IBD
∴BD=ID
∴BD=1cm
similarly BE=1cm
LetAD=xcm
AD=AF=1cm
SinceCF=CE
then using Pythagoras theorem in ΔABC
=(AB)2+(BC)2=(AC)2
=(x+1)2+(11−x)2=102
=x2+1+2x+121+x2−22x=100
=2x2−20x+22=0
=x2−10x+11=0
x=−(−10±√−102−4×1×11)2=10±√562=10±7.482=8.74or1.26
If x=8.74 cm then AB=x+1=8.74+1=9.74cm
and BC=11−x=11−8.74=2.26cm.
Then perimeter=9.74+2.26+10=22cm