The correct option is A (−3,5,2)
Let P(1,3,4) be the point.
Let N be the point on the plane
Equation of the plane is 2x−y+z+3=0
Thus, equation of line PN is
x−12=y−3−1=z−41=λ (let)
⇒x=2λ+1,y=−λ+3,z=λ+4
Substituting the above value in the equation of the plane, we have
2(2λ+1)−(3−λ)+(λ+4)+3=0
⇒6λ+6=0
⇒λ=−1
Thus, coordinates of N are
x=2(−1)+1=−1
y=3+1=4
z=−1+4=3
Let P′(x1,y1,z1) be the image of P.
Then, N is the mid point of PP′
∴−1=1+x12; 4=3+y12; 3=4+z12
⇒x1=−3, y1=5, z1=2
P′≡(−3,5,2)
Alternate :
If (x2,y2,z2) is the image of (x1,y1,z1) in the plane ax+by+cz+d=0, then
x2−x1a=y2−y1b=z2−z1c=−2(ax1+by1+cz1+d)a2+b2+c2
Hence, for the given problem
x2−12=y2−3−1=z2−41=−2(2×1−1×3+1×4+3)22+(−1)2+(1)2
⇒x2=−3, y2=5, z2=2