The correct option is C arg(z−1)=α
Let z−1=r(cosθ+isinθ)=reiθ
∴ Given expression
=reiθ⋅e−iα+1reiθeiα
=rei(θ−α)+1re−i(θ−α)
Since, imaginary part of given expression is zero, we have
rsin(θ−α)−1rsin(θ−α)=0⇒sin(θ−α)(r−1r)=0⇒r2=1
⇒r=1
∴|z−1|=1
Or,
sin(θ−α)=0⇒θ−α=0⇒θ=α∴arg(z−1)=α