The incentre of the triangle formed by (0, 0), (5, 12), (16, 12) is
Let A(0,0),B(5,12) and C(16,12) be the
vertices of triangle ABC.
Then c=AB=√(5−0)2+(12−0)2=√25+144=√169=13
Also, b=CA=√(16−0)2+(12−0)2=√256+144=√400=20
And a=BC=√(16−5)2+(12−12)2=√121+0=√121=11
The coordinates of the in-centre are
(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)=(11×0+20×8+13×811+20+13,11×0+20×12+13×1211+20+13)=(26444,39644)=(6,9)