The input x(t) and the corresponding output y(t) of a system are related by
y(t)=5t∫−∞x(τ)dτ
The system is
y(t)=5t∫−∞x(τ)dτ
For t = 1,
y(1)=5∫−∞x(τ)dτ
Here output depends on future values of x(t), so system is noncausal.
Now for shifted input t−t0, output is
y′(t)=5t∫−∞x(τ−t0)dτ=5t∫−∞x(τ−t0)dτ
τ−t0=τ′
⇒y′t=(5t−t0)∫−∞x(τ′)dτ′
andy(t−t0)=(5t−t0)∫−∞x(τ)dτ≠y′(t)
So system is time variant.