The correct option is C 3
(cosx−1)(cosx−ex)xn
=1xn((1−x22!+x44!−...)−1)((1−x22!+x44!−...)−(1+x+x22!+x33!...))
=1xn[(−x22!+x44!−....)(−x−x−x33!....)]
=−1xn−3[(−12!+x24!−...)(1+x+x23!)]
∴limx→0(cosx−1)(cosx−ex)xn to exist we must have n−3=0⇒n=3
Hence, option 'C' is correct.