The correct option is
A 3
Given,
limx→0(cosx−1)(cosx−ex)xn
we know expansion of cosx=1−x22!+x44!−x66!+…
limx→0(1−x22!+x44!−x66!+…−1)(1−x22!+x44!−x66!+…−ex)xn
limx→0(−x22!+x44!−x66!+…)(1−x22!+x44!−x66!+…−ex)xn
limx→0x3(−121+x24!−x36!+…)(1−exx2,−,12!,+,x24!,−,x36!,+,,.,)xn
for this limit to be finite at x=0,x3 should be eliminated hence xn=x3,n=3