wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral 12πD(x+y+10)dxdy, where D denotes the disc: x2+y24, evaluates to
  1. 20

Open in App
Solution

The correct option is A 20
Let x=rcosθ
y=rsinθ
becausex2+y24
r2cos2θ+r2sin2θ4


r24
r2
Now, I=12π(x+y+10)dxdy
I=12π(rcosθ+rsinθ+10)rdrdθ
I=12π2r=02πθ=0r2cosθdrdθ
+12π2r=02πθ=0r2sinθdrdθ
+12πr=2r=0θ=2πθ=010rdrdθ
I=12π[r3320.sinθ|2π0+r3320.cosθ|2π0+10r2220θ|2π0]
I=20

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Areas
ENGINEERING MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon