∫10(tan−1x)31+x2dx
∫(tan−1x)31+x2dx=∫(tan−1x)3d(tan−1x)
=(tan−1x)44+c
∫10(tan−1x)31+x2⋅dx=((tan−1x)44+c)10
=[(tan−11)44+c]−[(tan−10)44+1]
=⎡⎢ ⎢ ⎢ ⎢ ⎢⎣(π4)44+c⎤⎥ ⎥ ⎥ ⎥ ⎥⎦−[0+c]
=π445=π41024