∫π30cosx3+4sinxdx=∫π30d(sinx)3+4sinx
=∫π30d(sinx)3+4sinx=14[log(3+4sinx)]π30
=14[log[3+4(sinπ3)]−log(3+4sin(0))]
=14(log(3+4√32)−log(3))
=14(log(3+2√3)−log3)
=14log(3+2√33)
∴∫π30cosx3+4sinxdx=14log(3+2√33)