wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The integral 1/21/2([x]+1n(1+x1x))dx equal to:

Open in App
Solution

(xf(x)+f(x))dx=xf(x)+c(x(1x)+lnx)dx=xlnx+c

i.e, lnxdx=xlnxdx=xlnxx

1/21/2ln1+x1xdx=1/21/2(ln(1+x)ln(1x))dx
=|(x+1)ln(x+1)+(1x)ln(1x)(1+x+1x)|1/21/2=0

and 1/21/2[x]dx=01/2(1)dx+1/200dx=(x)}01/2=(1)2

Then 1/21/2([x]+ln1+x1x)dx=(1)2+0=(1)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon